Fatigue Limits Motor and Cognitive Improvements after High-intensity Exercise Prior to Balance Training over Telehealth in People with Spinocerebellar Ataxia

Authors

  • Chelsea E. Macpherson, PT, DPT, NCS, PhD Teachers College, Columbia University
  • Fatima Awad, BS Department of Neuroscience, Barnard College
  • Vruta Rana, PT, MA Department of Biobehavioral Sciences, Teachers College, Columbia University
  • Sheng-Han Kuo, MD Department of Neurology, Columbia University Irving Medical Center. The Initiative for Columbia Ataxia and Tremor, Columbia University https://orcid.org/0000-0002-9412-931X
  • Lori Quinn, PT, EdD, FAPTA Department of Biobehavioral Sciences, Teachers College, Columbia University, and Department of Rehabilitation and Regenerative Medicine (Physical Therapy), Columbia University Irving Medical Center https://orcid.org/0000-0002-2982-923X

DOI:

https://doi.org/10.63144/ijt.2025.6713

Keywords:

Ataxia, Balance, Fatigue, High Intensity, Telehealth

Abstract

Objective: This pilot randomized controlled trial explored feasibility, and preliminary effects from remotely delivered high- versus low-intensity exercise prior to balance training for people with Spinocerebellar Ataxia (SCA). Methods: Twenty participants with SCA (types 1, 2, 3, or 6) were randomized to high- or low-intensity exercise (30 min), followed by balance training (30 min), delivered via telehealth twice-weekly for 8-weeks. Exercises were progressive and individualized based on ataxia severity, mobility, and home equipment. Outcomes included disease-specific measures (Scale for Assessment and Rating of Ataxia at home, Cerebellar Cognitive Affective Syndrome Scale), and fatigue (Fatigue Severity Scale) assessed at baseline, mid- and post-intervention. Results: Eighteen participants completed the intervention with high adherence. Both groups improved on disease-specific measures, with greater gains in cognition and reduced fatigue in the low-intensity group. Conclusions: Remote delivery of exercise and balance training is feasible in SCA. Fatigue may limit tolerability of higher exercise intensities. National Institutes of Health Clinical Trials Registration Number: NCT05826171

  

References

Ahlskog, J. E. (2011). Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology, 77(3), 288–294. https://doi.org/10.1212/WNL.0b013e318225ab66

Bae, M., Zheng, P., & VanNostrand, M. (2025). The effects of balance training on cognitive function in persons with multiple sclerosis: A systematic review and meta-analysis. Multiple Sclerosis and Related Disorders, 94. https://doi.org/10.1016/j.msard.2025.106274

Barbuto, S., Martelli, D., Omofuma, I. B., Lee, N., Kuo, S. H., Agrawal, S., Lee, S., O’Dell, M., & Stein, J. (2020a). Phase I randomized single-blinded controlled study investigating the potential benefit of aerobic exercise in degenerative cerebellar disease. Clinical Rehabilitation. https://doi.org/10.1177/0269215520905073

Ben-Pazi, H., Browne, P., Chan, P., Cubo, E., Guttman, M., Hassan, A., Hatcher-Martin, J., Mari, Z., Moukheiber, E., Okubadejo, N. U., Shalash, A., Bajwa, J., Bloem, B. R., Galifianakis, N. B., Gatto, E., Goetz, C. G., Katz, M., Pantelyat, A., Tanner, C., … the International Parkinson and Movement Disorder Society Telemedicine Task Force. (2018). The Promise of Telemedicine for Movement Disorders: An Interdisciplinary Approach. Current Neurology and Neuroscience Reports, 18(5), 26. https://doi.org/10.1007/s11910-018-0834-6

Bogaert, A., Romanò, F., Cabaraux, P., Feys, P., & Moumdjian, L. (2023). Assessment and tailored physical rehabilitation approaches in persons with cerebellar impairments targeting mobility and walking according to the International Classification of Functioning: A systematic review of case-reports and case-series. Disability and Rehabilitation, 0(0), 1–23. https://doi.org/10.1080/09638288.2023.2248886

Boutron, I., Moher, D., Altman, D. G., Schulz, K. F., & Ravaud, P. (2017). Annals of Internal Medicine Academia and Clinic Extending the CONSORT Statement to Randomized Trials of Nonpharmacologic Treatment: Explanation and Elaboration. 295–310. https://doi.org/doi: 10.7326/0003-4819-148-4-200802190-00008.

Brusse, E., Brusse-Keizer, M. G. J., Duivenvoorden, H. J., & van Swieten, J. C. (2011). Fatigue in spinocerebellar ataxia: Patient self-assessment of an early and disabling symptom. Neurology, 76(11), 953–959. https://doi.org/10.1212/WNL.0b013e31821043a4

Callesen, J., Cattaneo, D., Brincks, J., & Dalgas, U. (2018). How does strength training and balance training affect gait and fatigue in patients with Multiple Sclerosis? A study protocol of a randomized controlled trial. NeuroRehabilitation, 42(2), 131–142. https://doi.org/10.3233/NRE-172238

Camarda, S. R. de A., Tebexreni, A. S., Páfaro, C. N., Sasai, F. B., Tambeiro, V. L., Juliano, Y., & Barros Neto, T. L. de. (2008). Comparison of maximal heart rate using the prediction equations proposed by Karvonen and Tanaka. Arquivos Brasileiros De Cardiologia, 91(5), 311–314. https://doi.org/10.1590/s0066-782x2008001700005

Casamento-Moran, A., Mooney, R. A., Chib, V. S., & Celnik, P. A. (2023). Cerebellar excitability regulates physical fatigue perception. The Journal of Neuroscience, 43(17), 3094–3106. https://doi.org/10.1523/JNEUROSCI.1406-22.2023

Cella, D., Nowinski, C., Peterman, A., Victorson, D., Miller, D., Lai, J.-S., & Moy, C. (2011). The neurology quality-of-life measurement initiative. Archives of Physical Medicine and Rehabilitation, 92(10 Suppl), S28-36. https://doi.org/10.1016/j.apmr.2011.01.025

Chirra, M., Marsili, L., Wattley, L., Sokol, L. L., Keeling, E., Maule, S., Sobrero, G., Artusi, C. A., Romagnolo, A., Zibetti, M., Lopiano, L., Espay, A. J., Obeidat, A. Z., & Merola, A. (2019). Telemedicine in neurological disorders: Opportunities and challenges. Telemedicine and E-Health, 25(7), 541–550. https://doi.org/10.1089/tmj.2018.0101

Clarke, D. J., Godfrey, M., Hawkins, R., Sadler, E., Harding, G., Forster, A., McKevitt, C., Dickerson, J., & Farrin, A. (2013). Implementing a training intervention to support caregivers after stroke: A process evaluation examining the initiation and embedding of programme change. Implementation Science, 8(1), 1–15. https://doi.org/10.1186/1748-5908-8-96

Conradsson, D., Nero, H., Löfgren, N., Hagströmer, M., & Franzén, E. (2017). Monitoring training activity during gait-related balance exercise in individuals with Parkinson’s disease: A proof-of-concept-study. BMC Neurology, 17(1), 19. https://doi.org/10.1186/s12883-017-0804-7

De Marchi, F., Contaldi, E., Magistrelli, L., Cantello, R., Comi, C., & Mazzini, L. (2021). Telehealth in neurodegenerative diseases: Opportunities and challenges for patients and physicians. Brain Sciences, 11(2), Article 2. https://doi.org/10.3390/brainsci11020237

De Zeeuw, C. I., & Ten Brinke, M. M. (2015). Motor learning and the cerebellum. Cold Spring Harbor Perspectives in Biology, 7(9), a021683. https://doi.org/10.1101/cshperspect.a021683

Di Liegro, Schiera, Proia, & Di Liegro. (2019). Physical activity and brain health. Genes, 10(9), 720. https://doi.org/10.3390/genes10090720

Diallo, A., Jacobi, H., Tezenas du Montcel, S., & Klockgether, T. (2020). Natural history of most common spinocerebellar ataxia: A systematic review and meta-analysis. Journal of Neurology. https://doi.org/10.1007/s00415-020-09815-2

El-Sayes, J., Harasym, D., Turco, C. V., Locke, M. B., & Nelson, A. J. (2019). Exercise-induced neuroplasticity: A mechanistic model and prospects for promoting plasticity. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 25(1), 65–85. https://doi.org/10.1177/1073858418771538

Fernandes, B., Barbieri, F. A., Arthuso, F. Z., Silva, F. A., Moretto, G. F., Imaizumi, L. F. I., Ngomane, A. Y., Guimarães, G. V., & Ciolac, E. G. (2020). High-intensity interval versus moderate-intensity continuous training in individuals with Parkinson’s disease: Hemodynamic and functional adaptation. Journal of Physical Activity & Health, 17(1), 85–91. https://doi.org/10.1123/jpah.2018-0588

Gentile, A. (2000). Skill acquisition: Action, movement, and neuromotor processes. In J. & S. Carr R (Ed.), Movement science: Foundations for physical therapy in rehabilitation (2nd ed.). Aspen.

Gill-Body, K. M., Hedman, L. D., Plummer, L., Wolf, L., Hanke, T., Quinn, L., Riley, N., Kaufman, R., Verma, A., Quiben, M., & Scheets, P. (2021). Movement system diagnoses for balance dysfunction: Recommendations From the Academy of Neurologic Physical Therapy’s Movement System Task Force. Physical Therapy, 101(9), pzab153. https://doi.org/10.1093/ptj/pzab153

Grobe-Einsler, M., Taheri Amin, A., Faber, J., Schaprian, T., Jacobi, H., Schmitz-Hübsch, T., Diallo, A., Tezenas du Montcel, S., & Klockgether, T. (2021). Development of SARAhome, a new video-based tool for the assessment of ataxia at home. Movement Disorders: Official Journal of the Movement Disorder Society, 36(5), 1242–1246. https://doi.org/10.1002/mds.28478

Guadagnoli, M. A., & Lee, T. D. (2004). Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning. Journal of Motor Behavior, 36(2), 212–224. https://doi.org/10.3200/JMBR.36.2.212-224

Gunn, H., Markevics, S., Haas, B., Marsden, J., & Freeman, J. (2015). Systematic review: The effectiveness of interventions to reduce falls and improve balance in adults with Multiple Sclerosis. Archives of Physical Medicine and Rehabilitation, 96(10), 1898–1912. https://doi.org/10.1016/j.apmr.2015.05.018

Heusel-Gillig, L. L., & Hall, C. D. (2023). Effectiveness of vestibular rehabilitation for patients with degenerative Cerebellar Ataxia: A retrospective cohort study. Brain Sciences, 13(11), 1520. https://doi.org/10.3390/brainsci13111520

Hirsch, M. A., & Farley, B. G. (2009). Exercise and neuroplasticity in persons living with Parkinson’s disease. European Journal of Physical and Rehabilitation Medicine, 45(2), 215–229.

Hoche, F., Guell, X., Vangel, M. G., Sherman, J. C., & Schmahmann, J. D. (2018). The cerebellar cognitive affective/Schmahmann syndrome scale. Brain, 141(1), 248–270. https://doi.org/10.1093/brain/awx317

Hornby, T. G., Reisman, D. S., Ward, I. G., Scheets, P. L., Miller, A., Haddad, D., Fox, E. J., Fritz, N. E., Hawkins, K., Henderson, C. E., Hendron, K. L., Holleran, C. L., Lynskey, J. E., & Walter, A. (2020). Clinical practice guideline to improve locomotor function following chronic stroke, incomplete spinal cord injury, and brain injury. Journal of Neurologic Physical Therapy, 44(1), 49. https://doi.org/10.1097/NPT.0000000000000303

Hortobágyi, T., Granacher, U., Fernandez-del-Olmo, M., Howatson, G., Manca, A., Deriu, F., Taube, W., Gruber, M., Márquez, G., Lundbye-Jensen, J., & Colomer-Poveda, D. (2021). Functional relevance of resistance training-induced neuroplasticity in health and disease. Neuroscience & Biobehavioral Reviews, 122, 79–91. https://doi.org/10.1016/j.neubiorev.2020.12.019

Hugues, N., Pin-Barre, C., Pellegrino, C., Rivera, C., Berton, E., & Laurin, J. (2022). Time-dependent cortical plasticity during moderate-intensity continuous training versus high-intensity interval training in rats. Cerebral Cortex, 32(17), 3829–3847. https://doi.org/10.1093/cercor/bhab451

Huxham, F. E., Goldie, P. A., & Patla, A. E. (2001). Theoretical considerations in balance assessment. The Australian Journal of Physiotherapy, 47(2), 89–100. https://doi.org/10.1016/s0004-9514(14)60300-7

Ilg, W., Bastian, A. J., Boesch, S., Burciu, R. G., Celnik, P., Claaßen, J., Feil, K., Kalla, R., Miyai, I., Nachbauer, W., Schöls, L., Strupp, M., Synofzik, M., Teufel, J., & Timmann, D. (2014). Consensus paper: Management of degenerative cerebellar disorders. The Cerebellum, 13(2), 248–268. http://dx.doi.org/10.1007/s12311-013-0531-6

Jabri, S., Bushart, D. D., Kinnaird, C., Bao, T., Bu, A., Shakkottai, V. G., & Sienko, K. H. (2022). Preliminary study of vibrotactile feedback during home-based balance and coordination training in individuals with cerebellar ataxia. Sensors (Basel, Switzerland), 22(9), 3512. https://doi.org/10.3390/s22093512

Jacobi, H., Rakowicz, M., Rola, R., Fancellu, R., Mariotti, C., Charles, P., Dürr, A., Küper, M., Timmann, D., Linnemann, C., Schöls, L., Kaut, O., Schaub, C., Filla, A., Baliko, L., Melegh, B., Kang, J. S., Giunti, P., Van De Warrenburg, B. P. C., … Klockgether, T. (2013). Inventory of non-ataxia signs (INAS): Validation of a new clinical assessment instrument. The Cerebellum, 12(3), 418–428. https://doi.org/10.1007/s12311-012-0421-3

Kalb, R., Brown, T. R., Coote, S., Costello, K., Dalgas, U., Garmon, E., Giesser, B., Halper, J., Karpatkin, H., Keller, J., Ng, A. V., Pilutti, L. A., Rohrig, A., Van Asch, P., Zackowski, K., & Motl, R. W. (2020). Exercise and lifestyle physical activity recommendations for people with multiple sclerosis throughout the disease course. Multiple Sclerosis Journal, 135245852091562.

https://doi.org/10.1177/1352458520915629

Kalra, L., Evans, A., Perez, I., Melbourn, A., Patel, A., Knapp, M., & Donaldson, N. (2004). Training carers of stroke patients: Randomised controlled trial. BMJ, 328(7448), 1099. https://doi.org/10.1136/bmj.328.7448.1099

Karlinsky, K. T., Netz, Y., Jacobs, J. M., Ayalon, M., & Yekutieli, Z. (2022). Static balance digital endpoints with Mon4t: Smartphone sensors vs. force plate. Sensors (Basel, Switzerland), 22(11), 4139. https://doi.org/10.3390/s22114139

Kathia, M., Duplea, S.-G., Bommarito, J. C., Hinks, A., Leake, E., Shannon, J., Pitman, J., Khangura, P., Coates, A., Slysz, J., Katerberg, C., McCarthy, D., Beedie, T., Malcolm, R., Witton, L. A., Connolly, B., Burr, J., Vallis, L. A., Power, G., & Millar, P. (2024). High-intensity interval versus moderate-intensity continuous cycling training in Parkinson’s disease: A randomized trial. Journal of Applied Physiology, 137(3), 603–615. https://doi.org/10.1152/japplphysiol.00219.2024

Keller, J. L., & Bastian, A. J. (2014a). A home balance exercise program improves walking in people with cerebellar ataxia. Neurorehabilitation and Neural Repair, 28(8), 770–778. https://doi.org/10.1177/1545968314522350

Khalil, H., van Deursen, R., Quinn, L., Rosser, A., & Busse, M. (2010). Clinical measurement of sit to stand performance in people with Huntington’s disease: Reliability and validity for the 30 second chair sit to stand test. Journal of Neurology, Neurosurgery and Psychiatry, 81, A28.

Krupp, L. B., Alvarez, L. A., LaRocca, N. G., & Scheinberg, L. C. (1988). Fatigue in Multiple Sclerosis. Archives of Neurology, 45(4), 435–437. https://doi.org/10.1001/archneur.1988.00520280085020

Lai, R.-Y., Rummey, C., Amlang, C. J., Lin, C.-Y. R., Chen, T. X., Perlman, S., Wilmot, G., Gomez, C. M., Schmahmann, J. D., Paulson, H., Ying, S. H., Onyike, C. U., Zesiewicz, T. A., Bushara, K. O., Geschwind, M. D., Figueroa, K. P., Pulst, S. M., Subramony, S. H., Burns, M. R., … Kuo, S.-H. (2024). Fatigue Impacts quality of life in people with spinocerebellar ataxias. Movement Disorders Clinical Practice. https://doi.org/10.1002/mdc3.14006

Lin Pedersen, T. (n.d.). patchwork: The Composer of Plots [R]. https://CRAN.R-project.org/package=patchwork

Macpherson, C. E. (2024). Priming Motor Learning Through Exercise in People With Spinocerebellar Ataxia (PRIME-Ataxia) [Ph.D., Columbia University]. https://www.proquest.com/docview/3072265836/abstract/8E670D2CE130477BPQ/1

Macpherson, C. E., Bartsch, B., King, M., Satchidanand, A., Kuo, S.-H., & Quinn, L. (2023). Telehealth delivery of a high-intensity motor priming intervention in cerebellar ataxia: A single-case experimental design. Physical Therapy and Rehabilitation, 10(1), Article 1.

Macpherson, C.E., Kempner, K, King, M, Kaplan, M, Pacheco, A, Wani. D, Kuo, S, & Quinn, L. (2025). Feasibility of a telehealth physical activity coaching intervention for degenerative cerebellar ataxia. Journal of Neurologic Physical Therapy, 49(4), 201–213. https://doi.org/10.1097/NPT.0000000000000516

Marquer, A., Barbieri, G., & Pérennou, D. (2014). The assessment and treatment of postural disorders in cerebellar ataxia: A systematic review. Annals of Physical and Rehabilitation Medicine, 57(2), 67–78. https://doi.org/10.1016/j.rehab.2014.01.002

Matsugi, A. (2017). Physical therapy for cerebellar ataxia. Neurological Physical Therapy, May. https://doi.org/10.5772/67649

Meissner, H., Creswell, J., Klassen, A. C., Plano, V., & Smith, K. C. (n.d.). Best Practices for Mixed Methods Research in the Health Sciences.

Mellesmoen, A., Sheeler, C., Ferro, A., Rainwater, O., & Cvetanovic, M. (2018). Brain derived Neurotrophic Factor (BDNF) delays onset of pathogenesis in transgenic mouse model of Spinocerebellar Ataxia Type 1 (SCA1). Frontiers in Cellular Neuroscience, 12, 509. https://doi.org/10.3389/fncel.2018.00509

Mendes, M. (2021). Chronotropism during exercise. Methodological and conceptual inconsistencies. Revista Portuguesa de Cardiologia (English Edition), 40(12), 955–956. https://doi.org/10.1016/j.repce.2021.10.028

Milne, S. C., Corben, L. A., Georgiou-Karistianis, N., Delatycki, M. B., & Yiu, E. M. (2017). Rehabilitation for individuals with genetic degenerative ataxia: A systematic review. Neurorehabilitation and Neural Repair, 31(7), 609–622. https://doi.org/10.1177/1545968317712469

Mitoma, H., Buffo, A., Gelfo, F., Guell, X., Fucà, E., Kakei, S., Lee, J., Manto, M., Petrosini, L., Shaikh, A. G., & Schmahmann, J. D. (2020). Consensus Paper. Cerebellar reserve: From cerebellar physiology to cerebellar disorders. The Cerebellum, 19(1), 131–153. https://doi.org/10.1007/s12311-019-01091-9

Miyai, I. (2012). Challenge of neurorehabilitation for cerebellar degenerative diseases. The Cerebellum, 11(2), 436–437. http://dx.doi.org/10.1007/s12311-011-0327-5

Miyai, I., Ito, M., Hattori, N., Mihara, M., Hatakenaka, M., Yagura, H., Sobue, G., & Nishizawa, M. (2012). Cerebellar ataxia rehabilitation trial in degenerative cerebellar diseases. Neurorehabilitation and Neural Repair, 26(5), 515–522. https://doi.org/10.1177/1545968311425918

Moriarty, T. A., Mermier, C., Kravitz, L., Gibson, A., Beltz, N., & Zuhl, M. (2019). Acute aerobic exercise based cognitive and motor priming: Practical applications and mechanisms. Frontiers in Psychology, 10, 2790. https://doi.org/10.3389/fpsyg.2019.02790

Moriarty, T., Johnson, A., Thomas, M., Evers, C., Auten, A., Cavey, K., Dorman, K., & Bourbeau, K. (2022). Acute aerobic exercise-induced motor priming improves piano performance and alters motor cortex activation. Frontiers in Psychology, 13, 825322. https://doi.org/10.3389/fpsyg.2022.825322

Morton, S. M. (2006). Cerebellar contributions to locomotor adaptations during Splitbelt Treadmill Walking. Journal of Neuroscience, 26(36), 9107–9116. https://doi.org/10.1523/JNEUROSCI.2622-06.2006

Müller, P., Duderstadt, Y., Lessmann, V., & Müller, N. G. (2020). Lactate and BDNF: Key mediators of exercise induced neuroplasticity? Journal of Clinical Medicine, 9(4), 1136. https://doi.org/10.3390/jcm9041136

Osborne, J. A., Botkin, R., Colon-Semenza, C., DeAngelis, T. R., Gallardo, O. G., Kosakowski, H., Martello, J., Pradhan, S., Rafferty, M., Readinger, J. L., Whitt, A. L., & Ellis, T. D. (2021). Physical Therapist management of Parkinson disease: A clinical practice guideline from the American Physical Therapy Association. Phys Ther. https://doi.org/10.1093/ptj/pzab302

Pérez-Avila, I., Fernández-Vieitez, J. A., Martínez-Góngora, E., Ochoa-Mastrapa, R., & Velázquez-Manresa, M. G. (2004). Effects of a physical training program on quantitative neurological indices in mild stage type 2 spinocerebelar ataxia patients. Revista de Neurologia, 39(10), 907–910.

Podsiadlo, D., & Richardson, S. (1991). The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society, 39(2), 142–148.

Polidori, A., Malagoli, M., Giacalone, R., Brichetto, G., Monti Bragadin, M., & Prada, V. (2024). 30-Second Chair Stand and 5-Times Sit-to-Stand tests are interesting tools for assessing disability and ability to ambulate among patients with Multiple Sclerosis. Life, 14(6). https://doi.org/10.3390/life14060703

Powell, L. E., & Myers, A. M. (1995). The Activities-specific Balance Confidence (ABC) Scale. J.Gerontol.A Biol.Sci.Med.Sci., 50A(1), M28–M34.

R Core Team. (2021). R: A language and environment for statistical computing. [R]. R Foundation for Statistical Computing. https://www.R-project.org/

Rampakakis, E., Ste-Marie, P. A., Sampalis, J. S., Karellis, A., Shir, Y., & Fitzcharles, M.-A. (2015). Real-life assessment of the validity of patient global impression of change in fibromyalgia. RMD Open, 1(1), e000146. https://doi.org/10.1136/rmdopen-2015-000146

Revelle, W. (2024). psych: Procedures for Psychological, Psychometric, and Personality Research (Version R package version 2.4.12) [R]. Northwestern University. https://CRAN.R-project.org/package=psych

Riebe, D., Ehrman, J. K., Liguori, G., & Magal, M. (2018). Exercise prescription for other clinical populations. In M. Nobel (Ed.), ACSM’s guidelines for exercise testing and prescription (10th ed., pp. 348–355). Wolters Kluwer.

Rodríguez-Díaz, J. C., Velázquez-Pérez, L., Rodríguez Labrada, R., Aguilera Rodríguez, R., Laffita Pérez, D., Canales Ochoa, N., Medrano Montero, J., Estupiñán Rodríguez, A., Osorio Borjas, M., Góngora Marrero, M., Reynaldo Cejas, L., González Zaldivar, Y., & Almaguer Gotay, D. (2018). Neurorehabilitation therapy in spinocerebellar ataxia type 2: A 24-week, rater-blinded, randomized, controlled trial. Movement Disorders: Official Journal of the Movement Disorder Society, 33(9), 1481–1487. https://doi.org/10.1002/mds.27437

Rogge, A.-K., Röder, B., Zech, A., & Hötting, K. (2018). Exercise-induced neuroplasticity: Balance training increases cortical thickness in visual and vestibular cortical regions. NeuroImage, 179, 471–479. https://doi.org/10.1016/j.neuroimage.2018.06.065

Roig, M., Thomas, R., Mang, C. S., Snow, N. J., Ostadan, F., Boyd, L. A., & Lundbye-Jensen, J. (2016). Time-dependent effects of cardiovascular exercise on memory. Exercise and Sport Sciences Reviews, 44(2), 81–88. https://doi.org/10.1249/JES.0000000000000078

Sabag, A., Little, J. P., & Johnson, N. A. (2022). Low-volume high-intensity interval training for cardiometabolic health. The Journal of Physiology, 600(5), 1013–1026. https://doi.org/10.1113/JP281210

Schmahmann, J. D., Pierce, S., MacMore, J., & L’Italien, G. J. (2021). Development and validation of a patient‐reported outcome measure of ataxia. Movement Disorders, 36(10), 2367–2377. https://doi.org/10.1002/mds.28670

Schmitz-Hubsch, T., du Montcel, S. T., Baliko, L., Berciano, J., Boesch, S., Depondt, C., Giunti, P., Globas, C., Infante, J., Kang, J.-S., Kremer, B., Mariotti, C., Melegh, B., Pandolfo, M., Rakowicz, M., Ribai, P., Rola, R., Schols, L., Szymanski, S., … Klockgether, T. (2006). Scale for the assessment and rating of ataxia: Development of a new clinical scale. Neurology, 66(11), 1717–1720. https://doi.org/10.1212/01.wnl.0000219042.60538.92

Singmann, H, Bolker, B, Westfall, J, Aust, F, & Ben-Shachar, M.S. (2024). afex: Analysis of Factorial Experiments (Version R package version 1.4-1) [R]. https://CRAN.R-project.org/package=afex

Sivaramakrishnan, A., Zuhl, M., & Mang, C. S. (2022). Editorial: Exercise priming: The use of physical exercise to support motor and cognitive function. Frontiers in Psychology, 13, 1043611. https://doi.org/10.3389/fpsyg.2022.1043611

Sparrow, D., De Angelis, T. R., Hendron, K., Thomas, C. A., Saint-Hilaire, M., & Ellis, T. (2016). Highly challenging balance program reduces fall rate in Parkinson disease. Journal of Neurologic Physical Therapy, 40(1), 24–30. https://doi.org/10.1097/NPT.0000000000000111

Statton, M. A., Encarnacion, M., Celnik, P., & Bastian, A. J. (2015). A single bout of moderate aerobic exercise improves motor skill acquisition. PLoS ONE, 10(10). https://doi.org/10.1371/journal.pone.0141393

Statton, M. A., Vazquez, A., Morton, S. M., Vasudevan, E. V. L., & Bastian, A. J. (2018). Making sense of cerebellar contributions to perceptual and motor adaptation. The Cerebellum, 17(2), 111–121. https://doi.org/10.1007/s12311-017-0879-0

Steib, S., Wanner, P., Adler, W., Winkler, J., Klucken, J., & Pfeifer, K. (2018). A Single bout of aerobic exercise improves motor skill consolidation in Parkinson’s Disease. Frontiers in Aging Neuroscience, 10, 328. https://doi.org/10.3389/fnagi.2018.00328

Stoykov, M. E., & Madhavan, S. (2015). Motor priming in neurorehabilitation. Journal of Neurologic Physical Therapy, 39(1), 33–42. https://doi.org/10.1097/NPT.0000000000000065

Sultana, R. N., Sabag, A., Keating, S. E., & Johnson, N. A. (2019). The effect of low-volume high-intensity interval training on body composition and cardiorespiratory fitness: A systematic review and meta-analysis. Sports Medicine (Auckland, N.Z.), 49(11), 1687–1721. https://doi.org/10.1007/s40279-019-01167-w

Swarbrick, D., Kiss, A., Trehub, S., Tremblay, L., Alter, D., & Chen, J. L. (2020). HIIT the Road Jack: An exploratory study on the effects of an acute bout of cardiovascular high-intensity interval training on piano learning. Frontiers in Psychology, 11, 2154. https://doi.org/10.3389/fpsyg.2020.02154

Synofzik, M., & Ilg, W. (2014). Motor training in Degenerative Spinocerebellar Disease: Ataxia-specific improvements by intensive physiotherapy and exergames. BioMed Research International, 2014. http://dx.doi.org/10.1155/2014/583507

Taube, W., Gruber, M., Beck, S., Faist, M., Gollhofer, A., & Schubert, M. (2007). Cortical and spinal adaptations induced by balance training: Correlation between stance stability and corticospinal activation. Acta Physiologica (Oxford, England), 189(4), 347–358. https://doi.org/10.1111/j.1748-1716.2007.01665.x

Tchelet, K., Stark-Inbar, A., & Yekutieli, Z. (2019). Pilot study of the encephalog smartphone application for gait analysis. Sensors (Basel, Switzerland), 19(23). https://doi.org/10.3390/s19235179

Thomas, R., Beck, M. M., Lind, R. R., Korsgaard Johnsen, L., Geertsen, S. S., Christiansen, L., Ritz, C., Roig, M., & Lundbye-Jensen, J. (2016). Acute exercise and motor memory consolidation: The role of exercise timing. Neural Plasticity, 2016. https://doi.org/10.1155/2016/6205452

Thomas, S., Reading, J., & Shephard, R. J. (1992). Revision of the Physical Activity Readiness Questionnaire (PAR-Q). Can J Sport Sci, 17(4), 338–345.

Tsay, J. S., Schuck, L., & Ivry, R. B. (2022). Cerebellar Degeneration impairs strategy discovery but not strategy recall. The Cerebellum. https://doi.org/10.1007/s12311-022-01500-6

Ueta, K., Mizuguchi, N., Sugiyama, T., Isaka, T., & Otomo, S. (2022). The motor engram of functional connectivity generated by acute whole-body dynamic balance training. Medicine and Science in Sports and Exercise, 54(4), 598–608. https://doi.org/10.1249/MSS.0000000000002829

Velázquez‐Pérez, L., Rodríguez‐Diaz, J. C., Rodríguez‐Labrada, R., Medrano‐Montero, J., Aguilera Cruz, A. B., Reynaldo‐Cejas, L., Góngora‐Marrero, M., Estupiñán‐Rodríguez, A., Vázquez‐Mojena, Y., & Torres‐Vega, R. (2019). Neurorehabilitation Improves the motor features in Prodromal SCA2: A randomized, controlled trial. Movement Disorders, 34(7), 1060–1068. https://doi.org/10.1002/mds.27676

Velázquez-Pérez, L., Rodríguez-Diaz, J. C., Rodríguez-Labrada, R., Medrano-Montero, J., Aguilera Cruz, A. B., Reynaldo-Cejas, L., Góngora-Marrero, M., Estupiñán-Rodríguez, A., Vázquez-Mojena, Y., & Torres-Vega, R. (2019). Neurorehabilitation improves the motor features in Prodromal SCA2: A randomized, controlled trial. Movement Disorders, 34(7), 1060–1068. https://doi.org/10.1002/mds.27676

Vloothuis, J. D. M., Mulder, M., Nijland, R. H. M., Goedhart, Q. S., Konijnenbelt, M., Mulder, H., Hertogh, C. M. P. M., Tulder, M. V., Van Wegen, E. E. H., & Kwakkel, G. (2019). Caregiver-mediated exercises with e-health support for early supported discharge after stroke (CARE4STROKE): A randomized controlled trial. PLoS ONE, 14(4), 1–14. https://doi.org/10.1371/journal.pone.0214241

Wanner, P., Müller, T., Cristini, J., Pfeifer, K., & Steib, S. (2020). Exercise Intensity does not modulate the effect of acute exercise on learning a complex whole-body task. Neuroscience, 426, 115–128. https://doi.org/10.1016/j.neuroscience.2019.11.027

Wickham, H, Averick, M, Bryan, J, Chang, W, D’Agostino McGowan, L, Romain F, Grolemund, G, Hayes, A, Henry, L, Hester, J, Kuhn, M, Lin Pedersen, T, Miller, E, Milton Bache, S, Muller, K, Ooms, J, Robinson, D, Seidel, D.P., Spinu, V, … Yutani, H. (2019). Welcome to the tidyverse. 4(43), 1686. https://doi.org/10.21105/joss.01686

Wickham, H, Francois, R, Henry, L, Muller, K, & Vaughan, Davis. (2023). dplyr: A Grammar of Data Manipulation. [R]. https://CRAN.R-project.org/package=dplyrR package version 1.1.4.

Winser, S. J., Schubert, M. C., Chan, A. Y. Y., Kannan, P., & Whitney, S. L. (2018). Can pre-screening vestibulocerebellar involvement followed by targeted training improve the outcomes of balance in cerebellar ataxia? Medical Hypotheses, 117(April), 37–41. https://doi.org/10.1016/j.mehy.2018.06.001

Youssef, H., Gönül, M. N., Sobeeh, M. G., Akar, K., Feys, P., Cuypers, K., & Vural, A. (2024). Is high-intensity interval training more effective than moderate continuous training in rehabilitation of Multiple Sclerosis: A comprehensive systematic review and meta-analysis. Archives of Physical Medicine and Rehabilitation, 105(8), 1545–1558. https://doi.org/10.1016/j.apmr.2023.12.012

Zoladz, J. A., Majerczak, J., Zeligowska, E., Mencel, J., Jaskolski, A., Jaskolska, A., & Marusiak, J. (2014). Moderate-intensity interval training increases serum brain-derived neurotrophic factor level and decreases inflammation in Parkinson’s disease patients. Journal of Physiology and Pharmacology: An Official Journal of the Polish Physiological Society, 65(3), 441–448.

T

Downloads

Published

2025-12-13

How to Cite

Macpherson, C. E., Awad, F., Rana, V., Kuo, S.-H., & Quinn, L. (2025). Fatigue Limits Motor and Cognitive Improvements after High-intensity Exercise Prior to Balance Training over Telehealth in People with Spinocerebellar Ataxia. International Journal of Telerehabilitation, 17(2). https://doi.org/10.63144/ijt.2025.6713

Issue

Section

Physical Therapy Telehealth